x^2+9/16-100=0

Simple and best practice solution for x^2+9/16-100=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+9/16-100=0 equation:



x^2+9/16-100=0
We multiply all the terms by the denominator
x^2*16+9-100*16=0
We add all the numbers together, and all the variables
x^2*16-1591=0
Wy multiply elements
16x^2-1591=0
a = 16; b = 0; c = -1591;
Δ = b2-4ac
Δ = 02-4·16·(-1591)
Δ = 101824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{101824}=\sqrt{64*1591}=\sqrt{64}*\sqrt{1591}=8\sqrt{1591}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1591}}{2*16}=\frac{0-8\sqrt{1591}}{32} =-\frac{8\sqrt{1591}}{32} =-\frac{\sqrt{1591}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1591}}{2*16}=\frac{0+8\sqrt{1591}}{32} =\frac{8\sqrt{1591}}{32} =\frac{\sqrt{1591}}{4} $

See similar equations:

| -10=6r=2 | | 7x(1/x)=0 | | 3x-60=5x-8 | | 4.9t^2=10t+45 | | 3|x|=20 | | -5x+100=86 | | 7x-10=12x+35 | | 4x-4+51+8x-11=180 | | 4c-13=-9 | | 75+25x=30+40x | | 12x+-13=-6x+17 | | -12+5u=33 | | -8x+4(1=5x)=-6x-14 | | -2x+7(-2x-3)=-32-5x | | 15x+36+3x+2=180 | | 3=3x-30 | | 3(a+4)+a=90 | | 2/5y-6=5 | | 4x-3(7-3x/2)=-2 | | 2+(10x-8)=4 | | 11x+16+36+3x+2=180 | | -11+2e=-5 | | ^2-4x+2=0 | | 6x-3(6-9x)=-7 | | x+(x-48)+(2x-164)=180 | | 6=x÷4-4 | | 5y=3/4+y | | 2x+52+90+x+38=180 | | 3x*3x+2x-7=0 | | -2x-(-17)=15 | | 13x-10+35+x+15=180 | | ^2=5x-6 |

Equations solver categories